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FOREWORD 

This document was prepared by the Boeing Aerospace Company for the National 

Aeronautics and Space Administration, Langley Research Center in compliance 

with Contract NASl-15644, "Design, Fabrication and Test of Graphite/Polyimide 

Composite Joints and Attachments for Advanced Aerospace Vehicles." 

This report is one of five that fully document contract results. It is the 

Sumnary of the Task 2.0 "Bonded Joint Tests." 

Dr. Paul A. Cooper was the contracting officer's technical representative for 

the full contract and Gregory Wichorek was the technical representative for 

design allowables testing of Celion 6@@@/PMR-15. Boeing performance was 

under the management of Mr. J. E. Harrison. Mr. D. E. Skoumal was the 

technical leader. Major participants in this program were Stephen H. Ward, 

Stephen F. McCleskey and James B. Cushman, Structural Development and 

Sylvester G. Hill, Materials and Processes. 

Certain materials are identified in this publication in order to specify 

adequately which materials were investigated. In no case does such identifi- 

cation imply recomnendation or endorsement of the material by NASA, nor does 

it imply that the materials are necessarily the only ones or the best ones 

available for the purpose. 
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1.0 SUMMARY 

This report summarizes a test/analysis program of bonded composite joints 

conducted for NASA under Contract NASl-15644. The objective of the program 

was to establish a limited data base describing the influence of variations in 

basic design parameters on the static strength and failure modes of graph- 

ite/polyimide (Gr/PI) bonded joints for use at elevated temperatures. 

An initial literature search was conducted to seek experimental data and 

analyses concerned with standard bonded joints. While various research pro- 

grams have dealt with epoxy bonded metal and epoxy bonded composite joints, 

few programs featuring polyimide materials and specifically bonded graphite/ 

polyimide composites were found in the open literature. 

A test plan was developed to investigate the effect of geometric and material 

parameters and elevated temperature on the static strength of "standard" 

joints. Single-lap and double-lap composite joints, and single-, double- and 

step-lap composite to metal joints were characterized. Tests were also con- 

ducted to measure shear strength, shear modulus and flatwise tension strength 

of the chosen adhesive system. 

Finite element analyses were conducted to evaluate modeling techniques and to 

assess effects of lamina stacking sequence and adhesive filleting on single- 

and double-lap bonded composite joints. 

Test specimens were fabricated from a Gr/PI system: Celion 3000 graphite 

fiber and PMR-15 polyimide resin. Joint bonding utilized a LARC-13 modified 

adhesive designated A7F. A total of 653 tests were conducted to evaluate 

effects of lap length, adherend thickness, adherend axial stiffness, lamina 
stacking sequence and adherend tapering. All specimens were subjected to a 

conditioning of 125 hours at 58!3K (6OO'F) prior to testing at 116K (-250°F), 

2g4K (70°F), and 561K (55OOF). 



An additional test matrix of "advanced" joints was established based on the 

results of the "standard" tests. The advanced joints, consisting of preformed 

adherends, adherends with scalloped edges and joints with hybrid interface 

plies, were tested and compared to baseline single- and double-lap designs. 

Test results indicated that single-lap joints can be designed and fabricated 

that will carry 123 to 385 kN/m (700 to 2200 lb/in.) at 561K (55O'F) and 

double-lap and symnetric step-lap attachments would be effective in the 438 to 

875 kN/m (2500-5000 lb/in) range at 561K (55O'F). The predominate failure 

mode was intralaminar shear and peel of the composite. The few adhesive 

failures that occurred were primarily on the high temperature tests of the 

composite-to-titanium joints. 

The "advanced" joint tests indicated that a significant improvement in joint 

efficiency is available through geometric modifications and hybrid material 

additions at the adherend interfaces. 

Correlation of test results for single lap composite-to-composite joints and 

to a limited degree for the titanium step-lap joints was achieved with closed 

form analytical models. Empirical correlations were developed for single-and 

double-lap joints. 
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2.0 INTRODUCTION 

Advanced designs for high-speed aircraft and space transportation systems 

require more efficient structures for operation in the 116K (-25O'F) to 589K 

(6POOF) temperature range. Design data are needed for bonded and bolted 

composite joints to support advanced design concepts. An experimental pro- 

gram to evaluate several concepts of graphite/polymide (Gr/PI) bonded and 

bolted joints was funded under NASA contract NASl-15644. 

The program was designed to extend the current epoxy-matrix composite tech- 

nology in joint and attachment design to include high-temperature polymide 

matrix composites. It provides an initial data base for designing and fabri- 

cating Gr/PI lightly loaded control surface structures for advanced space 

transportation systems and high-speed aircraft. The objectives of this pro- 

gram were two-fold: first, to identify and evaluate design concepts for 

specific joining applications of built-up attachments which could be used at 

rib-skin and spar-skin interfaces; second, to explore concepts for joining 

simple composite-composite and composite-metallic structural elements, iden- 

tify the fundamental parameters controlling the static strength character- 

istics of such joints, and compile data for design, manufacture, and test of 

efficient structural joints using the Gr/PI material system. The major tech- 

nical activities followed two paths concurrently. TASK 1 consisted of design 

allowables testing and design and test of specific built-up attachments. 

TASK 2 evaluated standard and advanced Gr/PI and Gr/PI to titanium bonded 

joints. An overall program flow for the two tasks is shown in Figure 2-l. 

This document presents a summary of the test and analysis results of TASK 2, 

shown enclosed in a dashed box in Figure 2-l. The primary objectives were to 

provide data useful for evaluation of standard bonded joint concepts and 

design procedures, to provide the designer with increased confidence in the 

use of bonded high-performance composite structures, and to evaluate possible 

modifications to standard bonded joint concepts for improved efficiency. 
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This is one of five reports that fully document the results of activities 

performed under NASA contract NASl-15644. The other four reports are: 

1. 

2. 

3. 

4. 

Cushman, J. B.; and McCleskey, S. F.: Design Allowables Test Program, 

Celion 3000/PMR-15 and Celion 6@0@/PMR-15 Graphite/ Polyimide Compos- 

ites, NASA CR 165840, 1982. 

Cushman, J. B.; McCleskey, S. F.; and Ward, S. H.: Design, Fabrication 

and Test of Graphite/Polyimide Composite Joints and Attachments - Sum- 

mary, NASA CR-3601, 1982. 

Cushman, J. B.; McCleskey, S. F.; and Ward, S. H.: Design, Fabrication 

and Test of Graphite/Polyimide Composite Joints and Attachments - Data 

Report, NASA CR-165955, 1982. 

Cushman, J. B.; McCleskey, S. F.; and Ward, S. H.: Test and Analysis of 

Graphite/Polyimide Bonded Joints - Data Report, NASA CR-165956, 1982. 

Measurement Units 

All measurement values in this report are expressed in the International 

System of Units and in U.S. Customary Units. Actual measurements and calcula- 

tions were made in U.S. Customary Units. 



Figure 2-l: TASK 1 and TASK 2 PROGRAtl FLOW 
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3.0 LITERATURE SURVEY AND PERFORMANCE TRENDS 

A literature survey was conducted to obtain information on graphite/polyimide 

composite design methods and joining parameters. Approximately 1500 articles 

and reports were identified as potentially relevant and based on the abstracts 

about 200 were selected for further study. Brief summaries of each report 

reviewed are reported in NASA Contract Report Numbers CR-159108 through CR- 

159115. 

The following summary resulting from the literature search and finite element 

analyses (see Section 9.0) gives expected performance trends of bonded joints 

with respect to various parameters. Unless otherwise noted, these statements 

apply to both single- and double-lap joints: 

0 Increasing the lap length increases joint strength towards an 

asymptote. 

0 Increasing the axial and flexural stiffness of the adherends 

increases joint strength (because of reduced peel stresses). 

0 Increasing the adherend thicknesses increases joint strength 

towards an asymptote. 

0 Stiffness balanced joints are stronger than unbalanced joints 

(because of reduced peel stresses). 

0 Tapering the ends of the adherends increases joint strength 

(because of reduced peel stresses). 

0 Placing a "softer" ply group at the joint interface (45' vs. 0') 

results in a more uniform shear strain along the joint interface, 

thus increasing double-lap joint strength. 



0 Single-lap joints which have adherends with equal thermal expansion 

coefficients are stronger at 116K (-25O'F) and 294K (7O'F) than 

joints which have adherends that have thermal expansion imbalances. 

This is caused by increased moment and peel stresses in the 

adherend/adhesive resulting from the residual thermal stresses pre- 

sent in the joint. The effect of a thermal expansion imbalance is 

small at 561K (55O'F) since this is close to the cure temperature 

(thermal stress free state). 

0 Composite (Gr/PI) to metal (titanium) double-lap joints have a 

thermal expansion imbalance. This suggests that these joints 

would not be as strong as an "all-composite" joint. However, 

because the inner adherends are titanium and this is where the 

greatest peel stresses occur, these joints are stronger, since 

interlamina failures would occur in a composite inner adherend. 

0 Increasing the temperature reduces residual stresses, softens the 

resin, and slightly reduces the strength of the composite adherend. 

The net result is an increase in joint strength with increasing 

temperature because of a reduction in severity of stress concentra- 

tions. This assumes that the reduction in basic composite and 

adhesive material properties is small at the elevated temperature. 

a 



4.@ TEST PLAN DEVELOPMENT 

The objective of the standard joint test program was to evaluate different 

types of bonded joints and the various parameters that affect static joint 

performance. Single-lap, double-lap and syrrmetric step-lap joints as shown 

in Figure 4-l were selected as the joint types to be evaluated. Analyses of 

these joint types are cornnon in the literature and they represent types 

commonly used in aerospace structures. Test matrices were established to 

evaluate joint strength parameters of temperature, lap length, adherend 

thickness, adherend axial stiffness, laminate stacking sequence and adherend 

tapering. The baseline laminate chosen was a quasi-isotropic layup to be 

consistent with Task 1.0 joints. Test matrices and specimen configurations 

are given in Tables 4-l through 4-3. All specimens were conditioned at 589K 

(6OO'F) in a one atmosphere environment (air) for 125 hr. prior to test. A 

total of 186 single-lap joints, 258 double-lap joints, and 18 symmetric step- 

lap joints were tested. Test temperatures were 116K (-250°F), 294K (7O'F) and 
561K (550'F). 

Based on results from the standard bonded joint testing, several advanced 

joint concepts were defined. These concepts and the corresponding test matrix 
are described in Section 8.0. 
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Gr/PI or Titanium 

SINGLE-LAP 

Titanium 

SYMMETRIC STEP-LAP 

Figure 4-1.: STANDARD BONDED JOINTS TESTED 
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Table 4-1: SINGLE LAP BONDED JOINT TEST MATRIX 

t l--La y-l 1 
I II-- l 

t-r L(Tapering) L 

Width = 25.4 mm (1.0 in.) 

LAP LENGTH (La) 

BASELINE l.~.J.l.l 

INCREASED ' : 
ADHEREND a 
STIFFNESS. 

STACKING 0 

SEQUENCE 0 

JNBALANCED 
4DHERENDS . -Ft-i-t 
INCREASED 
THICKNESS 
TAPERED 
ADHERENDS 1 I I.1 

BASELINE I 

ADHEREND LAYUP 

0 

l 

0 

0 

0 - 

TEMPERATURE 1 

NO. 
OF 

TEST: 

0 1 I I 0 0 72 

0 0 0 18 

0 6 

0 6 

0 0 0 18 

a 6 0 6 

3-t 0 0 a 54 

TOTAL 186 



Table 4-2: DOUBLE LAP BONDED JOINT TEST MATRIX 

L 
dr La t 

k ,f _--- -- II I 

(Tapering)>- . 
, T 

2t 
1 

t Width = 25.4.mm (lo0 in.) 

ADHEREND THICKNESS (t) ADHEREND LAYUP TEMPERATURE LAP LENGTH [La) 
m m (in 1 mn (in.) (OFI 

---I- 
NO. 
OF 

TESTS 

u-l 
1.521 z - 

2u03 3.05 1,52 -. is 

(J$ (.W (a+ T, 
- . 0 - 
0 

20.3 
(0.a 

45.7 
(1.8) 

116 
(-250 

294 561 
(70) (550 

al.02 1.52 
t.04) (006) 

18 

18 

18 

* UNBALANCEd 
c ADHERENDS 
$ INCREASED 

THICKNESS 
TAPERED 
ADHERENDS 

f BASELINE l 

: STACKING 
$ SEQUENCE 

18 0 

+ 

0 

0 

0 0 

0 0 

0 0 

0 

0 
---l-- 

36 

18 

0 

0 I 
TOTAL 258 



Table 4-3: SYWlETRIC STEP LAP BONDED JOINT TEST MATRIX 

Width = 25.4 nm (1.0 in.) 

I 

CONFIGURATION STEP LENGTH NUPBER MATERIAL 

FS-Step + -(,,lmm?o,-;;;:m "ra'(a@'$~~;de T a ttantum-6Al-4V 
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5.@ MATERIALS AND SPECIMEN FABRICATION 

Following are brief descriptions of the principal materials used in this 

program along with laminate processing and specimen fabrication procedures. 

Typical mechanical properties are listed in Table 5-l. 

Composites 

Composite joints characterized under this program were made from graphite/ 

polyimide tape materials. Based on previous experience from the CASTS* pro- 

gram research, Boeing and NASA chose the Celion/PMR-15 material system. The 

graphite fiber was Celion 3000, with NR150B2G polyimide sizing. Preimpreg- 

nated tape was procured from US Polymeric, Inc. to a material specification 

contained in Reference 1. Gr/PI and S-glass/PI fabric used in the "advanced" 

joint test matrix were preimpregnated in the Boeing Materials Technology 

labs. Laminates were processed according to procedures developed under NASA 

Contract NASl-15009. 

Adhesive 

The high-temperature adhesive utilized is designated A7F. A7F is a 5@:5@ 

resin solids copolfler blend of LARC-13 adhesive (supplied by NASA, Langley) 

(Ref. 2) and AMOCO's AI-1130 Amide-Imide. Sixty percent by weight aluminum 

powder and 5% by weight Cab-0-Sil are added. The adhesive was applied to 112 
E-glass scrim to form a .25mm (.Ol in.) thick adhesive film. 

Titanium 

The titanium used was Ti-6Al-4V (standard) per MIL-T-9046, Type III, Composi- 

tion C. 

*Composites for Advanced Space Transportation Systems (Contracts NASl-15009 
and NASl-15644). 
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Specimen Fabrication - Bonded Joint Tests 

All test specimens were fabricated in the Boeing Materials Technology labora- 

tories using the procedure flow shown in Figure 5-l. Quality control tests 

were conducted on all lots of prepreg to verify flexural modulus and strength 

and interlaminar shear strength prior to specimen fabrication. 

Chemical characterization tests of the resin were conducted using high pres- 

sure liquid chromatography, mass spectroscopy, infrared spectroscopy, and 

thermal gravimetric analysis. 

Celion 300Q/PMR-15 laminates were fabricated using processing procedures de- 

fined in Reference 1. 

Joints were bonded using A7F adhesive film. All titanium surfaces were 

chromic-acid anodized and primed with A7F primer. After joint bonding and 

conditioning, the bond lines were C-scanned to determine acceptability. 

Adhesive film was not used for syrnnetric step lap joints. The prepreg was 

layed-up on the steps and the joint was co-cured as an assembly. 

Specimen Fabrication-Adhesive Tests 

Specimens for the adhesive tests were prepared using standard laboratory 

practices. Titanium surfaces were chromic-acid anodized and primed with A7F 

primer. Specimen were assembled using the A7F adhesive film and cured using 

the procedures in Reference 1. 
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Table 5-l: TYPICAL ROOM TEMPERATURE MATERIAL PROPERTIES 

I3ATERIAL 

:ELION 30QD/PMR-15' 
,51.4x Fv) 

00 
9o" 

(0/fp5/90)45 

ADHESIVE* 
A7F 

TITANIUM 
6Al-4V 

1289 (187:130 (18.8) - 
45 c6,61 8.3 cl.2) - 
476 (69) 50.3 (7.3) - 

16 (2.3) 

924 (1341 110 (16) 1544 (79) 

G XY 
MPa (ksil 

80 (11.6 

43 (6.2) 

TE 4 cm cm-K 
(in/in'F) 

[l .$Glo-6 

17.5 (9.7) 

9.7 (5.4) 

* Aged 125 hr at 589K (6OO'F) 

, 
RECEIVE LAMINATE 

K4TERIAL + 
MATERIAL 

PANEL 
* FABRICATIDN+ 

PANEL 
q-c. ND1 

JOINT 
-b' MACHINING + BONDING - 

JOINT SPECIMEN SPECIMEN 
*CONDITIONING+ ND1 TAB 

BONDING -+ 
MACHINING II+ DELIVER TO 

& NUMBERING TEST LABS. 

A 

Figure 5-l: BONDED JOINT FABRICATION FLOW 
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6.0 ADHESIVE CHARACTERIZATION 

To support design and analysis of bonded joints it was necessary to character- 

ize the adhesive system. The adhesive is designated A7F (LARC-13 Amide-Imide 

modified) and is described in section 5.0. The A7F adhesive test matrix is 

shown in Table 6-l. Specimen configurations are shown in Figures 6-l through 

6-3. Tests were conducted in the Boeing materials test laboratories to 

measure average shear strength, and flatwise tension strength. Special 

"thick adherend" shear tests were conducted under subcontract by Dr. J. R. 

Vinson at the University of Delaware. These tests measured ultimate shear 

strength, shear modulus and ultimate shear strain. All test specimens were 

fabricated by Boeing. Coefficient of thermal expansion (CTE) tests were 

conducted during the design allowables testing under TASK 1.2.1 (Ref. 3); 

however, results are included here for completeness. 

Adhesive Test Results 

Average test results for the 12.7 mm (0.5 in.) single lap shear, "thick 

adherend" shear and flatwise tension tests are shown in Table 6-2 for the 

various conditionings and test temperatures. 

Since the "thick adherend" test specimen has lower peel stresses than the 

standard single lap specimens, it was expected that the shear strengths from 

this test would be higher than those from the titanium lap shear (ASTM D 1002) 

tests. Results for cured/post-cured specimens at 294K (7O'F) and 561.K (55O'F) 

are higher for the ASTM D 1002 procedure than for the "thick adherend" 

procedure. ASTM D 1002 results for aged specimens were slightly higher than 

"thick adherend" results at 561K (55O'F). 

There is no known explanation for these anomalies other than possible material 

and processing variations. C-scans of the bond lines showed no defects. 

Adhesive thicknesses could have been different for the two specimen configu- 

rations. Also there may have been some edge effects during the curing or 

aging. The thick adherend specimens were conditioned as a single plate 

19 



approximately 508 mm (2@ in.) wide and then cut into specimens. The ASTM D 

1002 specimens were made from standard titanium "finger" blanks 25.4 mn (1.0 

in.) wide which may have contributed to edge effects. 

The average shear modulus from the "thick adherend" tests was 58 MPa (8000 

psi) with the data showing drops in moduli at both cryogenic and elevated 

temperature with respect to room temperature. The room temperature aged 

specimens exhibited a bimodulus behavior. Results from the same tests show a 

decrease in ultimate shear strain with increasing temperature. 

Flatwise (out-of-plane) tension tests were conducted on cured/post-cured 

specimens that had stainless steel bars, while the aged specimens had titanium 

bars. All specimens failed cohesively. Test results show a drop in strength 

with an increase in temperature. On the average, flatwise tension strength 

for A7F adhesive are twice that for a Celion 3@@D/PMR-15 laminate (Ref. 3). 

This indicates that joints with strengths governed by peel failures will fail 

in the laminate rather than in the adhesive. 

Results of coefficient of thermal expansion (CTE) tests on A7F adhesive con- 

ducted under contract TASK 1.2.1 are shown in Figure 6-4. Data show a 

significant drop in CTE due to aging. 

Conclusions 

Results of the adhesive testing shows that A7F maintains a shear strength 

greater than 8.3 MPa (1200 psi) in the temperature range of 116K (-25O'F) to 

589K (55O'F). It maintains this strength after exposure to environmental 

conditions of aging and thermal cycling. A7F maintains a flatwise tension 

strength above lI..OMPa (1600 psi) at 561K (55O'F) with significant increases 

in strength with decreased temperature. CTE data for the A7F adhesive show a 

significant drop due to aging. 
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Table 6-1: TEST MATRIX 2 - A7F 
(LARC-13 Amide-Imide Modified) ADHESIVE 

- TEST NUHBEROF TESTS AT 1 TOTAL 
I 

MD.' TYPE 
QmDITIONING ,,6K NlHBER TEST 

Q (-250°F) RT 
561K DF 

SPECIMEN 

(%OnF) TESTS 
PROCEDURES CDNFIGURATIGN 

3 SHEAR : 
3 
3 3 3 ii ASTM FIGURE 

3 3 3 9 DlCUI2 6-l 
-irm4--/ 

4 SHEAR 1 z i 3 9 Thick FIGURL 
2 3 9 Adhtrtnd 6-2 

5 TENSION : 3 3 3 9 ASTM FIGURE 
3 3 3 9 02095 6-3 

p CONDITION CODE 'U of D - Unlvcrslty of Dtlrwart 

l- 

2- 

3- 

As cured/postcurtd 

Soaked for 125 hours at 589K (6oOOF) 
In a one (1) l tmpsphtrt tnviromnent (air) 

Thermally cycled 125 tlmtr In a temperature 
range from 116K to 589K (-250°F to 6GDOF) 
and in a one (1) atmosphtrt environment (air) 

MATERIAL: TITANlUn 6Al-4V ANNEALED 
1.07 mm (.D42 inJNW. 
BOND WITH LARC-13 (A7F) 
-254 m (.Ol In.)THICK 

(ASTM ~1002 STANDARD) 

Figure 6-l: TITANIUM SINGLE LAP SHEAR SPECIMEN 
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MTERIAL: TITANIlM 6Al-IV 

KM TUO 6.4 x 25.4 nm (.25 x 1.00 INCH) PIECES TOGETHER YITH 
A7F (LARC-13 Anidc-hide Ibdified) ADHSIVE. 

WHINE GAPS AS SHOul AFTER BONDING 

ALL DIMENSIONS - m (In.) 

Figure 6-2: THICK ADHERENDSHEAR TEST SPECIMEN TYP 

rT(:!it ;nn.]Dh. 

r 

-r 
KMMD YITH A7F 38.1 ml 
.254 I (.Ol In. (1.50 in.) 
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7.0 STANDARD BONDED JOINTS 

7.1 Standard Joint Test Results 

Test results obtained for the single- and double-lap joints had a significant 

amount of data scatter. Coefficients of variation ranged from 0.023 to 0.410. 

Normally, large scatter can be attributed to processing and manufacturing 

variables. However, since all laminate adherends received strict process 

control, no conclusive explanation was found for the data scatter. Therefore, 

comparisons between joint types and analysis/correlations are based on aver- 

age failure loads only. It is possible that the large data scatter may have 

masked the effect of parameter changes and thus affected the conclusions drawn 

from the test results. 

In most cases the “Gr/PI-Gr/PI” joints exhibited an intralamina failure mode 

caused by peel stresses in the composite adherends as shown in Figure 7-l. 

This failure mode consists of a failure within a ply, as opposed to an 

interlamina mode where the failure occurs between plies. For both single- and 

double-lap joints, the intralamina failure occured in the ply nearest the 

joint interface, with the failure occurring for the double-lap joint in the 

inner adherends. 

The "Gr/PI-titanium" specimens also exhibited intralamina and/or interlamina 

failures in the plies near the joint interface; however, some specimens also 

had adhesive failures over a portion of the joint. Evidence of partial 

adhesive failure occurred at all test temperatures but was predominant at the 

elevated temperature. 

Figures 7-2 through 7-7 are comparisons of single- and double-lap joints. 

Failure loads versus lap length for single- and double-lap "Gr/PI-Gr/PI" and 

"Gr/PI-titanium" joints are shown in Figures 7-2 and 7-3 respectively. As 

expected there was a general increase in failure load with increasing lap 

length, with the loads appearing to approach asymptotes. Figures 7-4 and 7-5 

show failure loads versus weight increment, defined in Figure 7-6, for 
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“Gr/PI-Gr/PI” and "Gr/PI-titanium" joints respectively. These curves show 

that a point is reached where adding more weight (increasing the lap length) 

does not result in an increase in strength. 

Joint analysis indicates that double-lap joints should be more structurally 

efficient. Joint efficiency is defined as the average failure load divided by 

the adherend ultimate load. Joint efficiencies of "Gr/PI-Gr/PI" single-lap 

joints varied from 0.10 to 0.27 and for double-lap joints from 0.18 to 0.42. 

Efficiencies of "Gr/P I-ti tanium" single-lap joints ranged from 0.14 to 0.38 

and for double-lap joints from 0.24 to 0.62. The greater efficiency of 

double-lap joints results from elimination of the load eccentricity and cor- 

responding moment that is present in unsupported single-lap joints. 

Figure 7-7 shows average weight coefficient (defined in Figure 7-6) versus lap 

length for single- and double-lap "Gr/PI-Gr/PI" joints. These curves indi- 

cate that for the same lap length, the single- and double-lap joints are 

approximately equal in load carried per unit weight of joint. Thus the 

double-lap joints, which have joint efficiencies approximately twice that of 

single-lap joints, are not more weight efficient than the corresponding 

single-lap joints. 

Results for the "3-step" smmetric step-lap joints are shown in Figure 7-8. 

As was expected there is a strong temperature dependence in the strength of 

these joints. This is attributable to the difference in coefficients of 

thermal expansion between the Gr/PI and titanium adherends and the elevated 

cure temperature, which result in residual thermal stresses in the joint and 

thus decreased strength at lower temperatures. 

A comparison of "Gr/PI-titanium" double lap joints with the "3-step" symme- 

tric step-lap joint shows them to be about equal in strength for the lap 

lengths tested. At these load levels a double-lap joint would be the better 

design solution because of simplicity in manufacturing (other design con- 

straints such as fatigue resistance, surface smoothness or weight may not 

allow this). Higher loads would dictate a symmetric step-lap (with more than 
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3 steps) or a scarf joint since increasing the lap length of a double-lap 

joint would not result in any significant additional strength. 

Effects of changes in the various joint parameters tested are summarized in 

Table 7-l. Given are the percent changes in joint failure loads with respect 

to the appropriate baseline configuration. Baseline joints were those with 

(@/+45/9@)N~ layups and the same lap length and thickness. The table indi- 

cates that increased adherend stiffness, tapered adherends and a (+45/O/9@) 

layup are all viable methods for improving the strengh of both single and 

double lap joints. 

In general, failure loads for the standard joints increased with increasing 

temperature, with the change in loads from cryogenic to room temperature being 

less than the change in loads from room to elevated temperature. For the 

“Gr/PI-Gr/PI” joints the average change in failure load from room to cryogenic 

temperature was -1% (values ranged from -36% to +10X), while the average 

change from room to elevated temperature was 24% (values ranged from -6% to 

85%). In contrast, the effect of temperature on the "Gr/PI-titanium" joints 

was more pronounced due to the thermal expansion imbalance in the joint. The 

average change in failure load from room to cryogenic temperature was -23% 

(values ranged from -6% to-38X), while the average change from room to ele- 

vated temperature was 47% (values ranged from -4% to 93%). The large data 

scatter precludes drawing conclusions about the effect of the various joint 

parameters on the temperature dependence of bonded joints, other than that a 

thermal expansion imbalance in the joint increases the temperature depend- 

ence. However, it appears from Table 7-l that the beneficial effects of 

increased adherend stiffness, tapered adherends, etc. are much greater at 

561K (55O'F) than at room or cryogenic temperatures. 

The maximum joint loads achieved in the standard joint test program are sum- 

marized in Figure 7-9. The maximum load achieved for a single-lap joint (25.4 

mm (1.0 in.) wide) was 9.71 kN (2184 lb) while for the double-lap and step- 

lap joints (25.4 mm (1.0 in.) wide) it was 24.64 kN (554@ lb) and 22.89 kN 

(5147 lb) respectively. All three maximums occurred at a test temperature of 
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561K (55O'F). Maximum loads shown should not be construed to be the maximum 

obtainable. Other layups or joint configurations for a particular joint type 

could have resulted in higher failure loads. 

7.2 Standard Joint Conclusions 

Results of the standard joints testing have demonstrated that Gr/PI bonded 

joints will carry loads of the magnitude expected for advanced aerospace 

vehicles at temperatures from 116K (-25O'F) to 561K (55O'F). Adherend taper- 

ing and careful selection of adherend stiffness and lamina stacking can result 

in significant improvement in joint efficiency. The failure loads of Gr/PI 

bonded joints show a significant temperature dependence. In general, failure 

loads increase with increasing temperature, with a stronger dependence shown 

by the "Gr/PI-titanium" joints than the “Gr/PI-Gr/PI” joints. The weak link 

in joint strength was the low transverse tension strength of the composite. 

Modifications to the material system that would result in an increase in that 

property or changes in the joint design that reduce or eliminate peel stresses 

would provide a significant increase in overall joint performance for all 

standard joint types. 
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Table 7-l: EFFECT OF CHANGES IN VARIOUS JOINT PARAMETERS 

jOIN 
rYPE 

k/PI 
k/PI 

;r/PI 
ri 

PARAMETER 

[ncreased Adherend 
Stiffness 

itacking' (545/D/90) 
Sequence (03/+453/903) 

Jnbalanced 
4dherends 
Increased Adherend 
Thickness 
Tapered D 
Adherends 

E 
L ( 
I 
1 
1 
L 
L 
L 

PERCENT 
a 

116K - 
~-25D*F) 

63 

-29 

47 1 150 1 -1 1 10 1 76 1 

24 I- 1 - ) 22 ) 7 1 

BASELINE 
CONFIGURATIONS: 

LAYUP LAP LENGTH 
THICKNESS 

(Gr/PI-Gr/PI) (GrIPI-Ti) -- 
Single Lap (O/+45/90) 50.8 mm (2.0 in.j 1.52 m (.06 tn.) 

Double LaP (O/+45/90) 33.0 mm (1.3 In.) 3.05 m (.12 in.) 1.52 mm (.06in.) _. -. 

BTapered Adherends Baseline is the Increased Adherend Thickness Configuration 
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8.0 ADVANCED BONDED JOINTS 

Based on the standard bonded single- and double-lap joint testing, several 

advanced joint design concepts were defined which showed promise of improving 

the joint efficiency. Concepts selected for testing were preformed adher- 

ends, scalloped adherends and two hybrid systems. Standard single- and 

double-lap bonded joints were made from the same material lot and tested to 

provide a baseline for comparing the performance of the advanced joint 

concepts. 

The preformed adherend concept consists of a single lap joint with the adher- 

ends angled at the lap ends (see Fig. 8-l). Finite element analyses (Ref. 4) 

have shown that preforming the adherends reduces the stress concentrations in 

the joint, thus increasing the joint strength. The reduction in peak stresses 

results from reducing the angle between the line of action of the applied load 

and the bond line. This in turn reduces the applied bending moments in the 

adherends and the peak shear and peel stresses in the joint. 

Scalloping the ends of the adherends (see Fig. 8-l) was expected to improve 

the joint strength by reducing the peel stress concentrations at the end of 

the lap. 

The two hybrid systems consisted of: 1) S-glass/PI fabric softening strips 

and 2) Gr/PI fabric layers placed between the adherends at the joint interface 

(see Fig. 8-l). These layers were intended to reduce the peak shear and peel 

stresses in the joint and thus allow a greater load transfer between the 

adherends. 

The advanced bonded joint test matrix is given in Table 8-l. Specimen config- 

urations are as shown in Figure 8-1. All specimens were conditioned by 

soaking at 589K (6OO'F) in a one atmosphere environment (air) for 125 hr prior 

to test. Tests were conducted at 116K, 294K and 561K (-250°F, 70°F and 

55O'F). A total of 191 specimens were tested. 
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8.1 Advanced Joint Test Results 

Results of the preformed adherend tests demonstrate that preforming the 

adherends of a single-lap joint gives a significant increase in load carrying 

capability. Figures 8-2 and 8-3 show the effect of preforming for tempera- 

tures of 294K (7O'F) and 561K (55O'F). The average failure load for each lap 

length is normalized by the average failure load for the baseline (straight 

adherends) configuration (from the advanced joint test matrix) with the same 

lap length. In all cases, preforming the adherends increased the average 

failure load. Increases ranged from 92% to 262% at 294K (7O'F) and from 46% 

to 234% at 561K (55O'F). No comparisons were made at 116K (-250'K) because 

there was no baseline data at this temperature; however, results similar to 

the 294K (7O'F) tests would be expected. As would be expected from these 

curves the joint efficiencies of the preformed adherend specimens were higher 

than those of the single-lap standard joints, ranging from 0.27 to 0.68. 

In contrast to the standard joints, the preformed adherend specimens had 

failure loads at elevated temperature which were in all cases lower than those 

at room temperature. The results for the 116K (-25O'F) specimens were not as 

consistent, in some cases falling above the room temperature loads, sometimes 

between the room and elevated temperature loads and in some cases below the 

elevated temperature failure loads. These results may be in part due to the 

large scatter in the failure load data. 

Several failure modes were exhibited by the preformed adherend specimens as 

outlined in Table 8-2. The failure modes changed from a purely intralaminar 

peel failure in the ply next to the joint interface, to severe delaminations 

and peel failures through the adherend thickness, to a failure outside of the 

joint at the preform bend as the lap lengths and preform angles increased. 

This change in failure modes may explain why the longer lap length specimens 

showed smaller improvements in strength over the baseline joints than the 

shorter lap length specimens (see Figs. 8-2 and 8-3). This result was the 

reverse of that expected from the results of testing by Sawyer and Cooper 

(Ref. 4). 
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The effects of scalloped adherends and fabric interfaces are summarized in 

Table 8-3. Shown are the percent changes in failure load with respect to the 

appropriate baseline single- and double-lap joints. 

Scalloping the single-lap joints gave a slight drop in failure load while 

scalloping the double-lap joints resulted in. an average increase of 17% in 

failure load. The difference between these two cases can be attributed to the 

different failure mechanisms of a single versus double-lap joint. The failure 

in a single-lap joint is governed by both the moment introduced in the joint 

and by peel stresses. The failure in the double-lap joints is governed 

primarily by the peel stresses in the inner adherend at the end of the lap. 

Since scalloping the ends of the adherends was designed to reduce the peel 

stresses at the end of the lap, it would be expected that the double-lap 

joints would be more affected by scalloping than single-lap joints. 

Failure loads versus lap length for the Gr/PI fabric interface, and S-glass 

fabric interface specimens tested at room and elevated temperature are com- 

pared to baseline data in Figures 8-4 and 8-5. Placing fabric interfaces, 

S-glass/PI and Gr/PI, between the single-lap joint adherends resulted in 28% 

to 76% increases in average failure load (see Table 8-2) except for the 

25.4 mm (1.0 in.) lap length S-glass/PI specimens, which showed no signifi- 

cant change in strength. The increase in strength can be attributed to a 

reduction in peak shear and peel stresses due to the "softer" interface 

materials. Most of the fabric interface specimens delaminated between the two 

fabric plies, as opposed to delaminating in the adherends as was the case for 

the standard joints. 

The temperature dependence of the joint strengths for the scalloped adherend 

and fabric interface joints was less than that for the standard joints. In 
general, there was no significant difference between the failure loads for the 

room and elevated temperature cases for these joints, with the average differ- 

ence being a 5% increase from room to elevated temperature. For the few cases 

where there was a significant difference the elevated temperature loads were 

greater than the corresponding room temperature failure loads. 
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8.2 Advanced Joint Conclusions 

The following conclusions have been drawn regarding advanced joint concepts. 

Single-lap joints with preformed adherends showed a large increase in 

strength over single-lap joints with straight adherends. The greatest 

percentage increase in strength was exhibited by the shortest lap length 

tested. 

Adding a fabric interface between single-lap joint adherends, either 

S-g1 ass/PI or Gr/PI, results in a significant increase in joint 

strength. This is an effective method for improving joint performance. 

Scalloping the adherends of a single-lap joint does not significantly 

improve joint strength. Scalloping the ends of the outer adherends of a 

"Gr/PI-Gr/PI" double-lap joint results in an increase in failure load. 

This, however, is a costly method for achieving a modest increase in 

joint performance and does not appear to be practical. Tapering the ends 

of the adherends is a more cost effective method of achieving the same 

improvement in double-lap joint strengths. 

42 



SINGLE-LAP JOINT 
t La 

.I, -q - t- 

1 
DOUBLE-LAP JOINT 

l-t 
t 

+ 

Preform Angl 

t 
1 

+ 

PREFORMED SINGLE-LAP JOINT 

i-2.54 mm (JO in.) c 

i 

--II- 5.08 mm (.20 in.) 

SCALLOPED ADHEREND DETAIL 

2 Pll'es S-Glass/ 
PI Cloth (+p5') 

(.05 in.1 I= 
I La + 25.4 mn (1.0 in.) 

S-GLASS/PI FABRIC INTERFACE DETAIL 

l-y - I 
I- 

I 
La 2' 

1 Ply Gr/PI Fabric 

+ 25.4 mm (O/90) (2 Places) 

(1 .o b-l.) 

GR;PI FABRIC INTERFACE DETAIL 

All Specimen Widths = 25.4 mn (1.0 in.) 

Figure 8-1: ADVANCED JOINT CONFIGURATIONS 
43 



Table 8-l: ADVANCED BONDED JOINT TEST MATRIX 
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Table 8-2: PREFORMED ADHEREND FAILURE MODES 

1 

SPJCIMEN TEST LAP FAILURE MODE NWERS 
CONFIGURATION NO. LENGTH 

mn (in.) 176K (-2503F) 294K (7O=F) 561K (55O'F) 

!i" Preformed 1 1 
1 1 
1 1 

lo3 Preformed 1 2 : 
2, 3 3 

15' Preformed 1 1 
3 3 
4 194 

~_ 

Failure 
Mode No. Failure Mode 

1. Jntralamina failure in adherend first ply + 
adherend-adhesive interface failure 

2. Interlamina failure in adherend + some tensile 
failures of individual plies 

3. Interlamina failure through adherend + tensile 
failures of indjvidual plies 

4. Tensile failure of adherend at preformed bend 
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Table 8-3: EFFECT OF ADVANCED JOINT CONCEPTS 

I 

I PARAMETER 

Double-Lap 
Scalloped 
Adherends I 

Single-Lap 
S-Glass/PI 

-Fabric Interface I 

Single-Lap 
Gr/PI Fabric 
Interface I 

PERCENT CHANGE IN FAILURE LOAD 
LAP LENGTH FROM BASELINE ADVANCED JOINTS 
ml (in-) 294K (,703F) 561K (55O'F) 

-21 -8 
1 

-7 4" 

11 
76 
59 

i----- 
7": 
65 r 

w No Advanced Joint Baseline Double Lap 
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9.0 TEST/ANALYSIS CORRELATION 

9.1 Finite Element Analysis (Boeing IR&D) 

Finite element analyses of single- and double-lap joints were performed using 

Boeing's BOPACE program. Modeling studies were conducted to optimize element 

size and arrangement and still provide the degree of accuracy needed to 

predict joint performance trends. Analyses were then conducted of specific 

joint designs to predict performance trends for various changes in the lamina 

stacking sequence. 

Study of Finite~ Element Mo*lingTec&niques - Double-Lap Joints 

Results of finite element analyses are strongly dependent on element size and 

modeling techniques. Ideally, smaller elements are required in areas of high 

stress concentrations; however, smaller elements also result in larger com- 

puter usage times and a corresponding increase in cost. Studies were per- 

formed to address the following areas and to assess their impact on analysis 

results. 

Required element size near stress risers. 

Acceptability of rezoning to larger elements, away from stress risers. 

Effect of lamina property averaging when element size exceeds lamina 

thickness. 

Possible discretization requirements dictated by lamina and adhesive 

material interfaces. 

Number of elements required through the adhesive thickness. 

Effects of varying longitudinal grid size with the transverse grid fixed 

and of varying the transverse grid size with the longitudinal grid fixed. 

Effects of adding adhesive fillets. 

The modeling studies were performed using an elastic, geometrically linear 

analysis of a composite double-lap bonded joint. Results of these analyses 
suggested the conclusions listed below which were incorporated into subse- 

quent standard joint analyses. 
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The peak shear, axial and peel stresses are not strongly dependent on 

mesh fineness, although for the coarsest model used sOme loss of accuracy 

is necessarily present. This assumes that the stresses are evaluated at 

some fixed point away from the end of the adherend. 

Lamina property averaging across large elements essentially results in 

predicted stresses which are an average of the values for the individual 

lamina. However deformed structure plots show that a deformation 

anomaly occurs at junctions between large and small elements where 

property averaging has been done. This results from the load path 

eccentricity relative to the larger element size. 

The magnitude of the gap between the inner adherends has an important 

influence on stress levels. 

Near stress concentrations, the value of the stress at the center of the 

element (or at other internal locations) may, differ significantly from 

those at the edges of elements. 

A highly refined mesh in the adhesive region is not required. Two 

elements through the adhesive thickness are sufficient. 

When comparing results from two models it is important to keep the longi- 

tudinal grid size constant. 

Adding an adhesive fillet would appear to have little effect on joint 

strength, as the fillet changes the location of the peak peel stress in 

the inner adherend but does not reduce it. 

Standard Bonded Double-Lap Joints 

Finite element analyses were conducted on 3 double-lap bonded joint configu- 

rations to evaluate various lamina stacking sequences. Model configurations 

analyzed are shown in Figure 9-l. The first had a very stiff zone, three 0' 
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lamina adjacent to the adhesive, the second, one Q" lamina adjacent to the 

adhesive and the third a very soft zone, 245' lamina nearest the adhesive. 

These analyses were used to predict trends and to compare stress levels in one 

joint with another. No predictions of failure load or joint strength were 

made at the time the analyses were conducted. 

A comparison of the three joints shows that all have the same extensional 

stiffness, but the flexural stiffness is quite different. The flexural stiff- 

ness is a far less important parameter for double-lap joints than for single 

lap joints. Each of the joints studied was designed to fail in the joint 

rather than in the adherend outside the joint. Thus, the adherend laminate is 

lightly loaded and the critical stresses are the adhesive shear stress, Liz, 

and the inner adherend peel stress,az, in the lamina adjacent to the adhesive 

near the edge of the lap. The latter becomes increasingly important as the 

adherend becomes thicker. 

A comparison of peak shear stresses, Txz, for the three models is shown in 

Figure 9-2. There is a reduction in the peak shear stress as the interface 

layer is made softer in extensional stiffness. A soft buffer next to the 

adhesive, i.e., the 245' lamina, transfers load more slowly with lower shear 

stress in the adhesive. This is accomplished by allowing additional shear 

strain across this soft zone, weakening the condition of equal strain, c.,, in 

the adherends and in the splice plates. 

A comparison of peak peel stresses, a,, for the three models is shown in 

Figure 9-3. This shows the opposite trend. The peel stresses increase as the 

interface layer becomes softer, but the increase in a smaller percentage than 

the reduction in shear stresses. 

In conclusion, these analyses indicate that it would be advantageous to have a 

soft zone (i.e., _ +45') adjacent to the adhesive. This would produce a 

decrease in adhesive shear stress, leading to an increase in joint strength 
provided the peel strength of the laminate is not exceeded. 
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Standard Bonded Single Lap Joints 

L. J. Hart-Smith suggests three distinct failure modes in a single lap bonded 

composite joint: (1) failure of the adherend outsi.de the bonded region 

because of additional bending stresses, (2) failure of the adhesive in shear, 

and (3) failure of the composite at the interface near the end of the joint 

because of "peel" stresses in the adhesive or lamina (Ref. 5). 

Examination of the failed single-lap joints tested during this program shows 

the third type of failure governed in nearly all cases. Therefore, any change 

that can reduce the peel stress, az, in the adhesive and in the lamina 

adjacent to the adhesive should increase the efficiency of the single-lap 

joint. 

An elastic, geometrically nonlinear finite element analysis was performed on 

a “Gr/PI-Gr/PI” single-lap bonded joint. A geometrically nonlinear model was 

used to account for the large rotations of the joint elements under load. 

Joint model, boundary conditions and material properties used are shown in 

Figure 9-4. 

The finite element analyses considered two layups for comparison: the first 

had (03/+453/903)s adherends and the second had (+453/@3/9@3)s adherends. 

The extensional stiffness of the two layups is the same, but the flexural 

stiffness of the first is 66% greater than the second. The peak peel stresses 

are 30% greater for the (+453/03/903) layup. Shear stresses in the adhesive 

did not change significantly between models. Analysis results indicate that 

if peel stresses are governing the joint failure, increasing the adherend 

flexural stiffness should increase the joint strength. 

9.2 Test/Analysis Correlation 

Several analysis methods were evaluated to predict the strengths of the stand- 

ard bonded joints. Most of the bonded joints failed in an intralaminar peel 

and/or shear mode. Therefore, most of the analyses in the literature, which 
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deal primarily with adhesive stress distributions and strengths, were not 

applicable. 

The A4EA single-lap joint analysis code developed by L.J. Hart-Smith (Ref. 5) 

calculates joint strengths based on adherend bending and peel stresses and on 

adhesive shear stresses. Test results had shown that the peel strength was 

the controlling parameter for the single lap joints tested. Therefore the 

A4EA code was chosen for correlation analysis. Initially the code did not 

give a good correlation with the test results. The equations used to calcu- 

late the moment in the adherends were changed to try to improve the correla- 

tions. Two alternate moment equations were substituted into the code. They 

are the unsimplified moment equation derived by Hart-Smith (Eq. (38) in 

Ref. 5) and the moment equation derived by Goland and Reissner (Ref. 6). Both 

equations resulted in significantly improved correlation with the test data. 

Figure 9-5 shows joint strength predictions based on peel failures for the 

three moment equations along with the appropriate test data for the 294K 
(7O'F) test temperature. Results for the elevated temperature case were 

similar. The peel strength predictions depend on the ratio (7 ciax/Ei. Since 

the parameters Q cmax (adherend or adhesive peel strength) and El (effective 

adhesive transverse tensile modulus) were not known with any degree of cer- 

tainty, the above ratio of the parameters was varied to give the best correla- 

tion. The value used for this ratio are given on the figure. Correlation was 

very good at small lap lengths and diverged at the longer lap lengths; how- 

ever, the performance trend was correct. 

An empirical method for the single-lap joints was also developed. It was 

postulated that failure occurs when the maximum principal stress at the criti- 

cal point in the adherend reaches a certain value. The critical point is the 

point in the adherend directly below the end of the joint overlap. The 

maximum principal stress at this point was calculated based on the actual test 

results for one lap length. This value of allowable stress was used to 

predict the failure load for the other lap lengths. Figure 9-7 shows the 

empirical joint strength predictions for all three test temperatures along 

with the appropriate test data. 
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Empirical and A4EA predictions were made for the various single-lap joint 

configurations tested. The average prediction error for the full Hart-Smith 

A4EA version was 23% 218% (avg. _ +l std. dev..), for the Goland and Reissner 

A4EA version 18% t13%, and for the empirical technique 24% 215%. 

An empirical method similar to the approach used for the single-lap joints was 

investigated to predict the strength of double-lap joints. The maximum prin- 

cipal stress was again used as the failure criteria. Figure 9-8 shows the 

empirical double-lap joint strength predictions for all three test temper- 

atures along with the appropriate test data. The average prediction error for 

all double-lap joint configurations tested was 24% ~25%. 

Joint strength predictions for the "3-step" symmetric step-lap joints were 

calculated using the A4EGX computer code developed by Hart-Smith (Ref. 7). 

Due to code problems a prediction was only obtained for the 561K (55O'F) case. 

The predicted failure load was 898 kN/m (5126 lb/in) compared to an average 

failure load of 901 kN/m (5147 lb/in). Although the predicted load was 

accurate, the code predicted an adhesive failure, whereas the actual joints 

appeared to have interlaminar composite failures. 

9.3 Test Analysis/Correlation Conclusions 

It is concluded that the above bonded joint prediction methods should be 

viewed only as "rough" prediction techniques. The failure of composite bonded 

joints is characterized by several failure modes: adherend tensile and intra- 

lamina shear/peel, and cohesive failure of the adhesive. Due to the complex- 

ity of the failure modes, and the highly nonuniform stress distribution, 

predictions of joint strength become extremely difficult. Also, the material 

properties required for a joint strength analysis, adherend and adhesive peel 

strengths, transverse tensile moduli, etc., are difficult to measure 

accurately. 

Although numerous researchers have investigated the state of stress within a 

bonded composite joint, few have made an attempt to predict actual failure 
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loads. Also, most of these prediction techniques assume a failure of the 

adhesive, and do not address the problem of interlamina composite adherend 

failures. 

The A4EA single-lap joint analysis code had good correlation with the test 

data when appropriate modifications.are made. However, work needs to be done 

to extend this analysis code to joint configurations such as tapered adher- 

ends, dissimilar adherend materials, altered laminate stacking sequences and 

fabric interfaces. 

The empirical techniques, while giving reasonable correlations, require that 

at least one set of tests be performed before predictions can be made. 

Further work needs to be done to improve this technique for parameter changes 

other than lap length and thickness. 
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10.0 CONCLUSIONS/RECOMMENDATIONS 

The following conclusions have resulted from this program: 

o Bonded “Gr/PI-Gr/PI” and "Gr/PI-titanium" joints can be designed and 

fabricated to carry loads of the magnitude expected for advancedaerospace 

vehicles over the 116K (-250°F) to 561K (550°F) temperature range. 

o Joint strength for these material combinations increases with: 

- increased lap length 

- increased temperature 

- increased adherend stiffness 

- increased adherend thickness 

- adherend tapering 

- +45" plies at the joint surface - 

o Hybrid systems (fabric interfaces) provide a simple and effective way 

to increase joint strength. 

o Preformed adherends significantly increase single-lap joint strength. 

Large deflections under load cause joints with preformed adherends to 

act as scarf joints. 

o A7F has a shear strength greater than 8.3 MPa (1200 psi) in the 116K 

(-250°F) to 589K (550°F) temperature range. 

o Finite element analyses of composite bonded joints can successfully 

predict joint performance trends. 

o Composite bonded joint strength prediction techniques are at this time 

limited to simple joint configurations and result in "rough" predictions 

only. 
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Based on the results and conclusions derived from this program, the following 

areas for further work on bonded composite joints are recomnended: 

o The combined effect of the following joint parameters and configurations 

investigated in this program should be explored in order to further 

increase joint strengths: 

- hybrid systems (fabric interfaces) 

- adherend tapering 

- increased stiffness 

- +45" plies at joint interfaces - 

o Hybrid systems for double-lap joints should be investigated. 

o Further work in predicting bonded joint strengths needs to be undertaken 

in order to improve confidence in using bonded composite joints for 

designs. The complex failure modes of composite adherends are not well 

understood. Since the interlamina strengths of composite laminates 

are low, composite bonded joints are susceptible to peel and/or interlamina 

shear failures, as opposed to an adhesive failure. 

o Preformed joints should be considered for use in two areas: 1) an 

internal structural attachment or in external joints which can be covered 

by fairings and 2) as a possible replacement for the ASTM D-1002 lap 

shear specimens so that the results approach the true adhesive shear 

strength (because of the reduced peel stresses). 
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